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ABSTRACT
Social motor coordination is an important mechanism responsible
for creating shared understanding but can be a challenge for Autistic
individuals. Social virtual reality (VR) provides an opportunity to
create a safe and inclusive environment for which interactions
can be augmented to promote social interactivity. Due to the bi-
directional nature of social interaction and adaptation, we created
a framework to explore social motor coordination with a virtual
artificial agent which can exhibit human-like behaviors. In this
experiment, we assessed the interactive behaviors of participants
completing a collaborative problem-solving task with the agent
using multidimensional cross-recurrence quantification analysis
(mdCRQA). Our results show that participants who discovered
novel solutions to the task exhibited greater coupling to the artificial
agent regardless of participant characteristics. Future work will
explore how social VR environments can be augmented to promote
social coordination.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI; •
Applied computing→ Psychology.
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1 INTRODUCTION
Research has demonstrated the natural tendency for co-acting in-
dividuals to coordinate their movements in social interactions [4].
This coordination occurs when it is the explicit goal of the experi-
ment, but also emerges naturally when the group goal is unrelated
[13]. Such interactions between co-acting members have shown to
improve task performance more generally [14] and leads to feelings
of pro-sociality [5]. However, Autistic people face challenges during
social interaction [1, 3], which may stem from challenges in social
motor coordination [2].

There is evidence demonstrating that assistive artificial systems
can reduce the social challenges faced by Autistic individuals [11].
We present a framework to investigate social motor coordination
within a neurodiverse sample when interacting in virtual reality.
Due to the bi-directional nature of social interaction, our approach
augments the social interaction by including an artificial agent
which embodies a model of social motor behavior. Here, we present
an experiment investigating the social motor coordination between
a neurodiverse sample and the human-like virtual avatar (see Figure
1).
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Figure 1: The social VR environment. One avatar was con-
trolled by a human participant, while the other was driven
by an artificial agent.

2 METHOD
2.1 Participants
Forty-two participants (M age = 14.7 years, ranging from 9 to 23
years of age; 27 male and 15 female) took part in the pilot exper-
iment. Our sample comprised 22 autistic individuals and 20 non-
autistic control participants. All autistic individuals had a formal
diagnosis and met the criteria for an autism spectrum condition on
the ADOS-2.

2.2 Materials and Task
The experiment was designed using the Unity game engine (ver.
2018.4.23f, Unity Technologies) (see Figure 1). Participants were
seated at the long edge of a table measuring 2.2 (L) × 1.2 (W) ×
0.81 (H) m and wore a virtual reality headset (Vive DevKit 2, HTC)
with integrated eye-tracking (Tobii AB). Within the virtual environ-
ment, participants were embodied as a human-like avatar that was
matched to the participant’s gender. The avatars were created using
Adobe Fuse CC (Beta Version 2014.3.14). The avatar’s head move-
ments were controlled by the VR headset, and the avatar’s eyes were
controlled by the gaze data detected by the headset’s embedded eye
tracker. Additionally, participants controlled the right index finger
of the avatar, which was controlled via a Polhemus G4 tracking
sensor (Polhemus Inc.) taped to the participants’ right index finger.
To emulate realistic movements of the non-controlled components
of the avatar (e.g., the elbow and torso), the FinalIK (RootMotion
Inc.) inverse kinematics calculator was used. Participants interacted
with an artificial agent which controlled a human-like avatar which
was gender-matched to the gender of a confederate who was in-
volved in the experiment. The artificial agent controlled the hand
position of the avatar along the transverse plane, and whose vertical
component of the hand’s position was fixed to the height of the
virtual table. The human participant’s hand position was similarly
constrained.

The participant and artificial agent completed the human ’shep-
herding’ task, previously used to study human-human [8] and
human-machine interaction [9]. Shown in Figure 1, participants
controlled "sheepdogs" which were represented as either a blue or
orange cube and were tasked to corral and contain a set of eva-
sive "sheep", modelled as spheres, to the center of a red circle. The
sheep exhibited Brownian motion, but would flee away from the
sheepdogs when threatened. The sheep’s behavior was the same as
outlined in [9]. All game pieces were contained within a 1 × 1 m
field.

Previous work documented two strategies participants could
use when completing the task [8, 9]. The first, search and recover
(S&R), involved both participants independently corralling indi-
vidual sheep towards the circle. The second, coupled oscillatory
containment (COC), involved both participants making oscillatory
movements around the entire herd to keep them contained. The
COC strategy is non-obvious and is only discovered by a subset
of participants completing the task. However, when discovered,
resulted in near ceiling-levels of performance. The artificial agent
implemented the same control architecture as detailed in [9] for
completing the task, and was capable of adaptively switching be-
tween S&R and COC behavior.

2.3 Procedure
Participants were told to work alongside their partner to corral and
contain the seven evasive sheep all within the red circle for at least
70% of a one-minute trial. Participants had amaximumof 45minutes
to meet this containment criteria on six occasions. This experiment
manipulated the identity of the partner that participants interacted
with during the experiment. Participants were either told that they
would be completing the task with an artificial agent-controlled
virtual avatar, or that they would complete the task alongside a
human confederate (randomly assigned). In both cases, participants
always interacted with the artificial agent whose behaviors were
governed by the model detailed in [9]. In the condition where
participants were told they would work with a human, a human
confederate would be seated opposite of the participant and mimic
the movements of the artificial agent to ensure the believably of
the manipulation.

2.4 Measures and Design
This pilot study investigated the interpersonal coupling dynamics
between participants and the artificial agent as they completed
the task. Interpersonal coupling was assessed using multidimen-
sional cross-recurrence quantification analysis (mdCRQA) [15]. Md-
CRQA can be interpreted as a multivariate cross-correlation anal-
ysis, which quantifies the frequency for which the states of two
multivariate timeseries co-occur at various time lags.

The percentage of time-point comparisons where the timeseries
co-occured is referred to as REC% and is interpreted as the amount of
incidental coupling between interacting systems. Additionally, the
maximum "run" of adjacent co-occurring time-points is referred to
asMaxL (for maximum line length), and is a measure of the strength
or stability of coupling between two interacting systems [12]. We
used both REC% and MaxL to quantify the coupling between the
participant and the artificial agent. The inputted timeseries were
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the 2-dimensional position values of participant and artificial agent
movements during the trial.

The study implemented a between-subjects 2 × 2 design where
neurotypical or Autistic participants were told their partner was
controlled by either an artificial agent or human.

3 RESULTS AND DISCUSSION
Multi-level (mixed-effects) models were fitted where each trial
was nested under each respective participant. The following fixed-
effects were considered: belief (human or artificial agent), partic-
ipant (neurotypical, Autistic), a belief × participant interaction,
success (success, failure), behavior type (S&R, COC), and discovery
(discoverers, non-discoverers). The following covariates were also
included: participant age and confederate identity (male, female; as
two confederates were involved in the study). The models were fit
using restricted maximum likelihood so that the degrees of free-
dom (using the Kenward-Rogers method [6]) could be estimated
for statistical testing.

For the amount of incidental coupling between the participants
and the artificial agent (REC%), human-agent pairs exhibited less
coupling during successful trials than non-successful trials, 𝑡 (387.9) =
−2.58, 𝑝 = .01. Further, participants who discovered the novel so-
lution to the shepherding task exhibited more instances of inci-
dental coupling with the artificial agent than did non-discoverers,
𝑡 (26.2) = 2.91, 𝑝 = .007.

For coupling strength (MaxL), human-agent pairs exhibited less
stable coupling during successful trials than unsuccessful trials,
𝑡 (93.1) = −8.21, 𝑝 < .001. Further, when pairs discovered and
used the novel solution (i.e., COC behavior [8]), the stability of
the coupling within the pair was also less, compared to when they
exhibited the non-novel behavior, 𝑡 (370.7) = −3.87, 𝑝 < .001. No
other effects were significant.

The results indicate that the belief manipulation, or characteris-
tics of participants (i.e., whether they were neurotypical or Autistic),
did not impact the quality of the interactionswith the artificial agent.
This may be due to the fact that the artificial agent was consistent
in its behavior regardless of who the co-actor was, which may not
be the case when interacting with other humans due to the adaptive
nature of social interaction. Further, the results also demonstrate
that social coupling may not necessarily predict task success [16],
but may serve as a mechanism for which new and novel strategies
are discovered [7] (as shown in the significant discovery effect on
REC%). Indeed, previous work has shown that particular interac-
tive behaviors may scaffold whether and when novel strategies are
discovered in the shepherding task used here [10]. Once discovered,
the benefits of the novel solution may be due to reducing the de-
mands of coordination (as indicated by a decrease in the strength
in the coupling [MaxL]).

Future work will explore how social VR can enhance interaction
quality between humans (or humans with machines), as well as
how such environments can be inclusive to all individuals.

ACKNOWLEDGMENTS
This research was supported by the ARC Centre of Excellence in
Cognition and its Disorders (CCD) Legacy Support Scheme. PN

and NC were supported by the Macquarie University Research Fel-
lowship. EP and MJR were supported by the Australian Research
Council Future Fellowships (FT190100077 and FT180100447, respec-
tively).

REFERENCES
[1] Paula Fitzpatrick, Jean A. Frazier, David M. Cochran, Teresa Mitchell, Caitlin

Coleman, and R. C. Schmidt. 2016. Impairments of Social Motor Synchrony
Evident in Autism Spectrum Disorder. Frontiers in Psychology 7 (8 2016), 1323.
https://doi.org/10.3389/fpsyg.2016.01323

[2] Paula Fitzpatrick, Veronica Romero, Joseph L. Amaral, Amie Duncan, Holly
Barnard, Michael J. Richardson, and R. C. Schmidt. 2017. Evaluating the impor-
tance of social motor synchronization and motor skill for understanding autism.
Autism Research 10 (10 2017), 1687–1699. Issue 10. https://doi.org/10.1002/aur.
1808

[3] Paul A. G. Forbes, Xueni Pan, and Antonia F. de C. Hamilton. 2016. Reduced
Mimicry to Virtual Reality Avatars in Autism Spectrum Disorder. Journal of
Autism and Developmental Disorders 46 (12 2016), 3788–3797. Issue 12. https:
//doi.org/10.1007/s10803-016-2930-2

[4] Stefanie Hoehl, Merle Fairhurst, and Annett Schirmer. 2021. Interactional syn-
chrony: signals, mechanisms and benefits. Social Cognitive and Affective Neuro-
science 16 (1 2021), 5–18. Issue 1-2. https://doi.org/10.1093/scan/nsaa024

[5] Michael J. Hove and Jane L. Risen. 2009. It’s All in the Timing: Interpersonal
Synchrony Increases Affiliation. Social Cognition 27 (12 2009), 949–960. Issue 6.
https://doi.org/10.1521/soco.2009.27.6.949

[6] Michael G. Kenward and James H. Roger. 1997. Small Sample Inference for Fixed
Effects from Restricted Maximum Likelihood. Biometrics 53 (9 1997), 983. Issue 3.
https://doi.org/10.2307/2533558

[7] Lynden K. Miles, Joanne Lumsden, Natasha Flannigan, Jamie S. Allsop, and
Dannette Marie. 2017. Coordination Matters: Interpersonal Synchrony Influences
Collaborative Problem-Solving. Psychology 08 (8 2017), 1857–1878. Issue 11.
https://doi.org/10.4236/psych.2017.811121

[8] Patrick Nalepka, Rachel W. Kallen, Anthony Chemero, Elliot Saltzman, and
Michael J. Richardson. 2017. Herd Those Sheep: Emergent Multiagent Coordina-
tion and Behavioral-Mode Switching. Psychological Science 28 (5 2017), 630–650.
Issue 5. https://doi.org/10.1177/0956797617692107

[9] Patrick Nalepka, Maurice Lamb, Rachel W. Kallen, Kevin Shockley, Anthony
Chemero, Elliot Saltzman, and Michael J. Richardson. 2019. Human social motor
solutions for human–machine interaction in dynamical task contexts. Proceedings
of the National Academy of Sciences 116 (1 2019), 1437–1446. Issue 4. https:
//doi.org/10.1073/pnas.1813164116

[10] Patrick Nalepka, Paula L. Silva, Rachel W. Kallen, Kevin Shockley, Anthony
Chemero, Elliot Saltzman, and Michael J. Richardson. 2021. Task dynamics define
the contextual emergence of human corralling behaviors. PLOS ONE 16 (11 2021),
e0260046. Issue 11. https://doi.org/10.1371/journal.pone.0260046

[11] Paola Pennisi, Alessandro Tonacci, Gennaro Tartarisco, Lucia Billeci, Liliana Ruta,
Sebastiano Gangemi, and Giovanni Pioggia. 2016. Autism and social robotics:
A systematic review. Autism Research 9 (2 2016), 165–183. Issue 2. https:
//doi.org/10.1002/aur.1527

[12] Michael J. Richardson, R. C. Schmidt, and Bruce A. Kay. 2007. Distinguishing the
noise and attractor strength of coordinated limb movements using recurrence
analysis. Biological Cybernetics 96 (2 2007), 59–78. Issue 1. https://doi.org/10.
1007/s00422-006-0104-6

[13] Richard C. Schmidt and Michael J. Richardson. 2008. Dynamics of Interpersonal
Coordination. In Coordination: Neural, Behavioral and Social Dynamics, Armin
Fuchs and Viktor K. Jirsa (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
281–308. https://doi.org/10.1007/978-3-540-74479-5_14

[14] Kevin Shockley, Daniel C. Richardson, and Rick Dale. 2009. Conversation and
Coordinative Structures. Topics in Cognitive Science 1 (4 2009), 305–319. Issue 2.
https://doi.org/10.1111/j.1756-8765.2009.01021.x

[15] Sebastian Wallot. 2019. Multidimensional Cross-Recurrence Quantification Anal-
ysis (MdCRQA) – A Method for Quantifying Correlation between Multivariate
Time-Series. Multivariate Behavioral Research 54 (3 2019), 173–191. Issue 2.
https://doi.org/10.1080/00273171.2018.1512846

[16] Sebastian Wallot, Panagiotis Mitkidis, John J. McGraw, and Andreas Roepstorff.
2016. Beyond Synchrony: Joint Action in a Complex Production Task Reveals
Beneficial Effects of Decreased Interpersonal Synchrony. PLOS ONE 11 (12 2016),
e0168306. Issue 12. https://doi.org/10.1371/journal.pone.0168306

295

https://doi.org/10.3389/fpsyg.2016.01323
https://doi.org/10.1002/aur.1808
https://doi.org/10.1002/aur.1808
https://doi.org/10.1007/s10803-016-2930-2
https://doi.org/10.1007/s10803-016-2930-2
https://doi.org/10.1093/scan/nsaa024
https://doi.org/10.1521/soco.2009.27.6.949
https://doi.org/10.2307/2533558
https://doi.org/10.4236/psych.2017.811121
https://doi.org/10.1177/0956797617692107
https://doi.org/10.1073/pnas.1813164116
https://doi.org/10.1073/pnas.1813164116
https://doi.org/10.1371/journal.pone.0260046
https://doi.org/10.1002/aur.1527
https://doi.org/10.1002/aur.1527
https://doi.org/10.1007/s00422-006-0104-6
https://doi.org/10.1007/s00422-006-0104-6
https://doi.org/10.1007/978-3-540-74479-5_14
https://doi.org/10.1111/j.1756-8765.2009.01021.x
https://doi.org/10.1080/00273171.2018.1512846
https://doi.org/10.1371/journal.pone.0168306

	Abstract
	1 Introduction
	2 Method
	2.1 Participants
	2.2 Materials and Task
	2.3 Procedure
	2.4 Measures and Design

	3 Results and Discussion
	Acknowledgments
	References

