Mind perception modulates within-subjects neural encoding of communicative gaze.

Nathan Caruana & Genevieve McArthur, Department of Cognitive Science, Macquarie University

💌 nathan.caruana@mq.edu.au @NateCaruana

BACKGROUND

- Modern VR and robotics can be used to simulate realistic social interactions, providing ecologically-valid methods for social-neuroscience research (Caruana et al., 2017) and the investigation of social challenges in autism and schizophrenia (Schilbach, 2016).
- Adopting an 'intentional stance' towards a virtual agent (or robot) impacts subjective experiences, social behaviour and the neural processing of social cues in the context of gaze-cued joint attention (Caruana, Spirou & Brock, 2017; Caruana, de Lissa & McArthur, 2017).
- However, evidence for the influence of mind perception on gaze evaluation has either been indirect (Pfeiffer et al., 2014; Wiese et al., 2017) or utilized between-subjects designs which cannot dismiss the potential impact of individual differences (Caruana, de Lissa & McArthur, 2015; 2017).

METHOD

Experimental Task - Cooperative joint attention game

PREVIOUS FINDINGS

STUDY 1 (Caruana, de Lissa & McArthur, 2015)

CURRENT STUDY

Belief manipulated within-subjects with counterbalanced order. $(n=20, 5 \text{ males}, M_{age} = 24.70, SD = 9.05)$

RESULTS

Occipitotemporal N170

Centro-parietal P250 & P350

Human → Computer (n=9)

Computer → Human (n=11)

TOPOGRAPHY OF EFFECTS

CONCLUSIONS & IMPLICATIONS

- Whether one perceives a simulated agent as having a mind, capable of attention and intentions, significantly influences the neural evaluation of social cues.
- The centro-parietal P250 response reliably indexes the achievement of joint attention - which is unique to interactions where one adopts an intentional stance.
- The P250 may be a promising neural marker for adopting an intentional stance, which may support the evaluation of virtual and robotic agent design for consumer applications (see Weise et al., 2017 for review).

REFERENCES

Caruana, N. Spirou, D., & Brock, J. (2017). Human agency beliefs influence behaviour during virtual social interactions. PeerJ, 5, e3819.
 Caruana, N., McArthur, G., Woolgar, A., & Brock, J. (2017). Simulating Social Interactions for the Experimental Investigation of Joint

Attention. NBR, 74, 115-125.
Caruana, N., de Lissa, P., & McArthur, G. (2017). Beliefs About Human Agency Influence the Neural Processing of Gaze During Joint Attention. Soc. Neuro., 72(2), 194-206.

Caruana, N., de Lissa, P., & McArthur, G. (2015). The Neural Time Course of Evaluating Self-initiated Joint Attention Bids. Brain and Cog., 98, 43-52. Wiese, E., Metta, G., & Wykowska, A. (2017). Robots as Intentional Agents: Using Neuroscientific Methods to Make Robots Appear

More Social. Front. Psychol. 8:1663. Schilbach, L. (2016). (2016). Towards a o. 1663. rards a second-person neuropsychiatry. Phil. Trans. Royal Soc. of Lon. B, Biological sciences, 371(1686).